library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 80939_Mnchen <- sunrise.set(48.201196,11.614567699999952, "2023/01/01", timezone="MET", num.days=370) sunrise <- 80939_Mnchen$sunrise sunset <- 80939_Mnchen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 80939_Mnchen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 80939_Mnchen["ss"] <- as.POSIXct(sunset, format = "%H:%M") 80939_Mnchen["timestamp"] <- align.time(80939_Mnchen$sunrise, 60*10) 80939_Mnchen <- 80939_Mnchen[c("timestamp", "sr", "ss")] locsrss <- ggplot(80939_Mnchen, aes(x=80939_Mnchen$timestamp)) + geom_line(aes(y=80939_Mnchen$sr)) + geom_line(aes(y=80939_Mnchen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 80939_Mnchen 2023", x = "Datum", y = "Zeit") pdf("80939_Mnchen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="80939_Mnchen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 80939_Mnchen["Sonnenaufgang"] <- strftime(80939_Mnchen$sr, format="%H:%M") 80939_Mnchen["Sonnenuntergang"] <- strftime(80939_Mnchen$ss, format="%H:%M") write.table(80939_Mnchen, file="80939_Mnchen_SaSu.csv", dec=',', sep=';', row.names=FALSE)