library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 79379 <- sunrise.set(47.8091623,7.618035300000001, "2023/01/01", timezone="MET", num.days=370) sunrise <- 79379$sunrise sunset <- 79379$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 79379["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 79379["ss"] <- as.POSIXct(sunset, format = "%H:%M") 79379["timestamp"] <- align.time(79379$sunrise, 60*10) 79379 <- 79379[c("timestamp", "sr", "ss")] locsrss <- ggplot(79379, aes(x=79379$timestamp)) + geom_line(aes(y=79379$sr)) + geom_line(aes(y=79379$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 79379 2023", x = "Datum", y = "Zeit") pdf("79379_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="79379_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 79379["Sonnenaufgang"] <- strftime(79379$sr, format="%H:%M") 79379["Sonnenuntergang"] <- strftime(79379$ss, format="%H:%M") write.table(79379, file="79379_SaSu.csv", dec=',', sep=';', row.names=FALSE)