library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 66271 <- sunrise.set(49.14672,7.078478, "2023/01/01", timezone="MET", num.days=370) sunrise <- 66271$sunrise sunset <- 66271$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 66271["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 66271["ss"] <- as.POSIXct(sunset, format = "%H:%M") 66271["timestamp"] <- align.time(66271$sunrise, 60*10) 66271 <- 66271[c("timestamp", "sr", "ss")] locsrss <- ggplot(66271, aes(x=66271$timestamp)) + geom_line(aes(y=66271$sr)) + geom_line(aes(y=66271$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 66271 2023", x = "Datum", y = "Zeit") pdf("66271_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="66271_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 66271["Sonnenaufgang"] <- strftime(66271$sr, format="%H:%M") 66271["Sonnenuntergang"] <- strftime(66271$ss, format="%H:%M") write.table(66271, file="66271_SaSu.csv", dec=',', sep=';', row.names=FALSE)