library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 65428 <- sunrise.set(49.982019,8.453074, "2023/01/01", timezone="MET", num.days=370) sunrise <- 65428$sunrise sunset <- 65428$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 65428["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 65428["ss"] <- as.POSIXct(sunset, format = "%H:%M") 65428["timestamp"] <- align.time(65428$sunrise, 60*10) 65428 <- 65428[c("timestamp", "sr", "ss")] locsrss <- ggplot(65428, aes(x=65428$timestamp)) + geom_line(aes(y=65428$sr)) + geom_line(aes(y=65428$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 65428 2023", x = "Datum", y = "Zeit") pdf("65428_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="65428_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 65428["Sonnenaufgang"] <- strftime(65428$sr, format="%H:%M") 65428["Sonnenuntergang"] <- strftime(65428$ss, format="%H:%M") write.table(65428, file="65428_SaSu.csv", dec=',', sep=';', row.names=FALSE)