library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 64846 <- sunrise.set(49.87312,8.824643, "2023/01/01", timezone="MET", num.days=370) sunrise <- 64846$sunrise sunset <- 64846$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 64846["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 64846["ss"] <- as.POSIXct(sunset, format = "%H:%M") 64846["timestamp"] <- align.time(64846$sunrise, 60*10) 64846 <- 64846[c("timestamp", "sr", "ss")] locsrss <- ggplot(64846, aes(x=64846$timestamp)) + geom_line(aes(y=64846$sr)) + geom_line(aes(y=64846$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 64846 2023", x = "Datum", y = "Zeit") pdf("64846_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="64846_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 64846["Sonnenaufgang"] <- strftime(64846$sr, format="%H:%M") 64846["Sonnenuntergang"] <- strftime(64846$ss, format="%H:%M") write.table(64846, file="64846_SaSu.csv", dec=',', sep=';', row.names=FALSE)