library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 55128 <- sunrise.set(49.968576769380896,8.240214483544909, "2023/01/01", timezone="MET", num.days=370) sunrise <- 55128$sunrise sunset <- 55128$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 55128["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 55128["ss"] <- as.POSIXct(sunset, format = "%H:%M") 55128["timestamp"] <- align.time(55128$sunrise, 60*10) 55128 <- 55128[c("timestamp", "sr", "ss")] locsrss <- ggplot(55128, aes(x=55128$timestamp)) + geom_line(aes(y=55128$sr)) + geom_line(aes(y=55128$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 55128 2023", x = "Datum", y = "Zeit") pdf("55128_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="55128_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 55128["Sonnenaufgang"] <- strftime(55128$sr, format="%H:%M") 55128["Sonnenuntergang"] <- strftime(55128$ss, format="%H:%M") write.table(55128, file="55128_SaSu.csv", dec=',', sep=';', row.names=FALSE)