library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 48,_5 <- sunrise.set(47.99878169999999,5.0029916, "2023/01/01", timezone="MET", num.days=370) sunrise <- 48,_5$sunrise sunset <- 48,_5$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 48,_5["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 48,_5["ss"] <- as.POSIXct(sunset, format = "%H:%M") 48,_5["timestamp"] <- align.time(48,_5$sunrise, 60*10) 48,_5 <- 48,_5[c("timestamp", "sr", "ss")] locsrss <- ggplot(48,_5, aes(x=48,_5$timestamp)) + geom_line(aes(y=48,_5$sr)) + geom_line(aes(y=48,_5$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 48,_5 2023", x = "Datum", y = "Zeit") pdf("48,_5_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="48,_5_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 48,_5["Sonnenaufgang"] <- strftime(48,_5$sr, format="%H:%M") 48,_5["Sonnenuntergang"] <- strftime(48,_5$ss, format="%H:%M") write.table(48,_5, file="48,_5_SaSu.csv", dec=',', sep=';', row.names=FALSE)