library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 47669 <- sunrise.set(51.37952627180411,6.3086679025025205, "2023/01/01", timezone="MET", num.days=370) sunrise <- 47669$sunrise sunset <- 47669$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 47669["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 47669["ss"] <- as.POSIXct(sunset, format = "%H:%M") 47669["timestamp"] <- align.time(47669$sunrise, 60*10) 47669 <- 47669[c("timestamp", "sr", "ss")] locsrss <- ggplot(47669, aes(x=47669$timestamp)) + geom_line(aes(y=47669$sr)) + geom_line(aes(y=47669$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 47669 2023", x = "Datum", y = "Zeit") pdf("47669_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="47669_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 47669["Sonnenaufgang"] <- strftime(47669$sr, format="%H:%M") 47669["Sonnenuntergang"] <- strftime(47669$ss, format="%H:%M") write.table(47669, file="47669_SaSu.csv", dec=',', sep=';', row.names=FALSE)