library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 44536_l��nen <- sunrise.set(51.6037535,7.477477099999987, "2023/01/01", timezone="MET", num.days=370) sunrise <- 44536_l��nen$sunrise sunset <- 44536_l��nen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 44536_l��nen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 44536_l��nen["ss"] <- as.POSIXct(sunset, format = "%H:%M") 44536_l��nen["timestamp"] <- align.time(44536_l��nen$sunrise, 60*10) 44536_l��nen <- 44536_l��nen[c("timestamp", "sr", "ss")] locsrss <- ggplot(44536_l��nen, aes(x=44536_l��nen$timestamp)) + geom_line(aes(y=44536_l��nen$sr)) + geom_line(aes(y=44536_l��nen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 44536_l��nen 2023", x = "Datum", y = "Zeit") pdf("44536_l��nen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="44536_l��nen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 44536_l��nen["Sonnenaufgang"] <- strftime(44536_l��nen$sr, format="%H:%M") 44536_l��nen["Sonnenuntergang"] <- strftime(44536_l��nen$ss, format="%H:%M") write.table(44536_l��nen, file="44536_l��nen_SaSu.csv", dec=',', sep=';', row.names=FALSE)