library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 44379 <- sunrise.set(51.514941,7.379774, "2023/01/01", timezone="MET", num.days=370) sunrise <- 44379$sunrise sunset <- 44379$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 44379["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 44379["ss"] <- as.POSIXct(sunset, format = "%H:%M") 44379["timestamp"] <- align.time(44379$sunrise, 60*10) 44379 <- 44379[c("timestamp", "sr", "ss")] locsrss <- ggplot(44379, aes(x=44379$timestamp)) + geom_line(aes(y=44379$sr)) + geom_line(aes(y=44379$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 44379 2023", x = "Datum", y = "Zeit") pdf("44379_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="44379_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 44379["Sonnenaufgang"] <- strftime(44379$sr, format="%H:%M") 44379["Sonnenuntergang"] <- strftime(44379$ss, format="%H:%M") write.table(44379, file="44379_SaSu.csv", dec=',', sep=';', row.names=FALSE)