library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 44267 <- sunrise.set(51.4578808,7.5261488, "2023/01/01", timezone="MET", num.days=370) sunrise <- 44267$sunrise sunset <- 44267$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 44267["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 44267["ss"] <- as.POSIXct(sunset, format = "%H:%M") 44267["timestamp"] <- align.time(44267$sunrise, 60*10) 44267 <- 44267[c("timestamp", "sr", "ss")] locsrss <- ggplot(44267, aes(x=44267$timestamp)) + geom_line(aes(y=44267$sr)) + geom_line(aes(y=44267$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 44267 2023", x = "Datum", y = "Zeit") pdf("44267_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="44267_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 44267["Sonnenaufgang"] <- strftime(44267$sr, format="%H:%M") 44267["Sonnenuntergang"] <- strftime(44267$ss, format="%H:%M") write.table(44267, file="44267_SaSu.csv", dec=',', sep=';', row.names=FALSE)