library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 41236 <- sunrise.set(51.15302436124946,6.441249847412109, "2023/01/01", timezone="MET", num.days=370) sunrise <- 41236$sunrise sunset <- 41236$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 41236["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 41236["ss"] <- as.POSIXct(sunset, format = "%H:%M") 41236["timestamp"] <- align.time(41236$sunrise, 60*10) 41236 <- 41236[c("timestamp", "sr", "ss")] locsrss <- ggplot(41236, aes(x=41236$timestamp)) + geom_line(aes(y=41236$sr)) + geom_line(aes(y=41236$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 41236 2023", x = "Datum", y = "Zeit") pdf("41236_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="41236_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 41236["Sonnenaufgang"] <- strftime(41236$sr, format="%H:%M") 41236["Sonnenuntergang"] <- strftime(41236$ss, format="%H:%M") write.table(41236, file="41236_SaSu.csv", dec=',', sep=';', row.names=FALSE)