library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 37603 <- sunrise.set(51.7755136,9.4988528, "2023/01/01", timezone="MET", num.days=370) sunrise <- 37603$sunrise sunset <- 37603$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 37603["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 37603["ss"] <- as.POSIXct(sunset, format = "%H:%M") 37603["timestamp"] <- align.time(37603$sunrise, 60*10) 37603 <- 37603[c("timestamp", "sr", "ss")] locsrss <- ggplot(37603, aes(x=37603$timestamp)) + geom_line(aes(y=37603$sr)) + geom_line(aes(y=37603$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 37603 2023", x = "Datum", y = "Zeit") pdf("37603_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="37603_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 37603["Sonnenaufgang"] <- strftime(37603$sr, format="%H:%M") 37603["Sonnenuntergang"] <- strftime(37603$ss, format="%H:%M") write.table(37603, file="37603_SaSu.csv", dec=',', sep=';', row.names=FALSE)