library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 32052 <- sunrise.set(52.0919704,8.650065799999993, "2023/01/01", timezone="MET", num.days=370) sunrise <- 32052$sunrise sunset <- 32052$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 32052["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 32052["ss"] <- as.POSIXct(sunset, format = "%H:%M") 32052["timestamp"] <- align.time(32052$sunrise, 60*10) 32052 <- 32052[c("timestamp", "sr", "ss")] locsrss <- ggplot(32052, aes(x=32052$timestamp)) + geom_line(aes(y=32052$sr)) + geom_line(aes(y=32052$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 32052 2023", x = "Datum", y = "Zeit") pdf("32052_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="32052_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 32052["Sonnenaufgang"] <- strftime(32052$sr, format="%H:%M") 32052["Sonnenuntergang"] <- strftime(32052$ss, format="%H:%M") write.table(32052, file="32052_SaSu.csv", dec=',', sep=';', row.names=FALSE)