library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 28870 <- sunrise.set(53.117035,9.1186231, "2023/01/01", timezone="MET", num.days=370) sunrise <- 28870$sunrise sunset <- 28870$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 28870["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 28870["ss"] <- as.POSIXct(sunset, format = "%H:%M") 28870["timestamp"] <- align.time(28870$sunrise, 60*10) 28870 <- 28870[c("timestamp", "sr", "ss")] locsrss <- ggplot(28870, aes(x=28870$timestamp)) + geom_line(aes(y=28870$sr)) + geom_line(aes(y=28870$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 28870 2023", x = "Datum", y = "Zeit") pdf("28870_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="28870_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 28870["Sonnenaufgang"] <- strftime(28870$sr, format="%H:%M") 28870["Sonnenuntergang"] <- strftime(28870$ss, format="%H:%M") write.table(28870, file="28870_SaSu.csv", dec=',', sep=';', row.names=FALSE)