library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 27607_langen <- sunrise.set(53.6100865,8.6078866, "2023/01/01", timezone="MET", num.days=370) sunrise <- 27607_langen$sunrise sunset <- 27607_langen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 27607_langen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 27607_langen["ss"] <- as.POSIXct(sunset, format = "%H:%M") 27607_langen["timestamp"] <- align.time(27607_langen$sunrise, 60*10) 27607_langen <- 27607_langen[c("timestamp", "sr", "ss")] locsrss <- ggplot(27607_langen, aes(x=27607_langen$timestamp)) + geom_line(aes(y=27607_langen$sr)) + geom_line(aes(y=27607_langen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 27607_langen 2023", x = "Datum", y = "Zeit") pdf("27607_langen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="27607_langen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 27607_langen["Sonnenaufgang"] <- strftime(27607_langen$sr, format="%H:%M") 27607_langen["Sonnenuntergang"] <- strftime(27607_langen$ss, format="%H:%M") write.table(27607_langen, file="27607_langen_SaSu.csv", dec=',', sep=';', row.names=FALSE)