library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 26605 <- sunrise.set(53.4668022,7.5382334, "2023/01/01", timezone="MET", num.days=370) sunrise <- 26605$sunrise sunset <- 26605$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 26605["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 26605["ss"] <- as.POSIXct(sunset, format = "%H:%M") 26605["timestamp"] <- align.time(26605$sunrise, 60*10) 26605 <- 26605[c("timestamp", "sr", "ss")] locsrss <- ggplot(26605, aes(x=26605$timestamp)) + geom_line(aes(y=26605$sr)) + geom_line(aes(y=26605$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 26605 2023", x = "Datum", y = "Zeit") pdf("26605_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="26605_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 26605["Sonnenaufgang"] <- strftime(26605$sr, format="%H:%M") 26605["Sonnenuntergang"] <- strftime(26605$ss, format="%H:%M") write.table(26605, file="26605_SaSu.csv", dec=',', sep=';', row.names=FALSE)