library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 26465 <- sunrise.set(53.74736919999999,7.492568200000001, "2023/01/01", timezone="MET", num.days=370) sunrise <- 26465$sunrise sunset <- 26465$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 26465["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 26465["ss"] <- as.POSIXct(sunset, format = "%H:%M") 26465["timestamp"] <- align.time(26465$sunrise, 60*10) 26465 <- 26465[c("timestamp", "sr", "ss")] locsrss <- ggplot(26465, aes(x=26465$timestamp)) + geom_line(aes(y=26465$sr)) + geom_line(aes(y=26465$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 26465 2023", x = "Datum", y = "Zeit") pdf("26465_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="26465_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 26465["Sonnenaufgang"] <- strftime(26465$sr, format="%H:%M") 26465["Sonnenuntergang"] <- strftime(26465$ss, format="%H:%M") write.table(26465, file="26465_SaSu.csv", dec=',', sep=';', row.names=FALSE)