library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 21514 <- sunrise.set(53.528064301939835,10.621891021728516, "2023/01/01", timezone="MET", num.days=370) sunrise <- 21514$sunrise sunset <- 21514$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 21514["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 21514["ss"] <- as.POSIXct(sunset, format = "%H:%M") 21514["timestamp"] <- align.time(21514$sunrise, 60*10) 21514 <- 21514[c("timestamp", "sr", "ss")] locsrss <- ggplot(21514, aes(x=21514$timestamp)) + geom_line(aes(y=21514$sr)) + geom_line(aes(y=21514$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 21514 2023", x = "Datum", y = "Zeit") pdf("21514_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="21514_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 21514["Sonnenaufgang"] <- strftime(21514$sr, format="%H:%M") 21514["Sonnenuntergang"] <- strftime(21514$ss, format="%H:%M") write.table(21514, file="21514_SaSu.csv", dec=',', sep=';', row.names=FALSE)