library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 18581 <- sunrise.set(54.35325501291539,13.468894958496094, "2024/01/01", timezone="MET", num.days=370) sunrise <- 18581$sunrise sunset <- 18581$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 18581["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 18581["ss"] <- as.POSIXct(sunset, format = "%H:%M") 18581["timestamp"] <- align.time(18581$sunrise, 60*10) 18581 <- 18581[c("timestamp", "sr", "ss")] locsrss <- ggplot(18581, aes(x=18581$timestamp)) + geom_line(aes(y=18581$sr)) + geom_line(aes(y=18581$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 18581 2024", x = "Datum", y = "Zeit") pdf("18581_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="18581_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 18581["Sonnenaufgang"] <- strftime(18581$sr, format="%H:%M") 18581["Sonnenuntergang"] <- strftime(18581$ss, format="%H:%M") write.table(18581, file="18581_SaSu.csv", dec=',', sep=';', row.names=FALSE)