library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 16348_wandlitz <- sunrise.set(52.75422,13.472769999999969, "2023/01/01", timezone="MET", num.days=370) sunrise <- 16348_wandlitz$sunrise sunset <- 16348_wandlitz$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 16348_wandlitz["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 16348_wandlitz["ss"] <- as.POSIXct(sunset, format = "%H:%M") 16348_wandlitz["timestamp"] <- align.time(16348_wandlitz$sunrise, 60*10) 16348_wandlitz <- 16348_wandlitz[c("timestamp", "sr", "ss")] locsrss <- ggplot(16348_wandlitz, aes(x=16348_wandlitz$timestamp)) + geom_line(aes(y=16348_wandlitz$sr)) + geom_line(aes(y=16348_wandlitz$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 16348_wandlitz 2023", x = "Datum", y = "Zeit") pdf("16348_wandlitz_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="16348_wandlitz_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 16348_wandlitz["Sonnenaufgang"] <- strftime(16348_wandlitz$sr, format="%H:%M") 16348_wandlitz["Sonnenuntergang"] <- strftime(16348_wandlitz$ss, format="%H:%M") write.table(16348_wandlitz, file="16348_wandlitz_SaSu.csv", dec=',', sep=';', row.names=FALSE)