library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 12355_de <- sunrise.set(52.40750329999999,13.497563899999932, "2023/01/01", timezone="MET", num.days=370) sunrise <- 12355_de$sunrise sunset <- 12355_de$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 12355_de["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 12355_de["ss"] <- as.POSIXct(sunset, format = "%H:%M") 12355_de["timestamp"] <- align.time(12355_de$sunrise, 60*10) 12355_de <- 12355_de[c("timestamp", "sr", "ss")] locsrss <- ggplot(12355_de, aes(x=12355_de$timestamp)) + geom_line(aes(y=12355_de$sr)) + geom_line(aes(y=12355_de$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 12355_de 2023", x = "Datum", y = "Zeit") pdf("12355_de_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="12355_de_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 12355_de["Sonnenaufgang"] <- strftime(12355_de$sr, format="%H:%M") 12355_de["Sonnenuntergang"] <- strftime(12355_de$ss, format="%H:%M") write.table(12355_de, file="12355_de_SaSu.csv", dec=',', sep=';', row.names=FALSE)