library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 1160 <- sunrise.set(55.6783559,12.5774005, "2023/01/01", timezone="MET", num.days=370) sunrise <- 1160$sunrise sunset <- 1160$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 1160["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 1160["ss"] <- as.POSIXct(sunset, format = "%H:%M") 1160["timestamp"] <- align.time(1160$sunrise, 60*10) 1160 <- 1160[c("timestamp", "sr", "ss")] locsrss <- ggplot(1160, aes(x=1160$timestamp)) + geom_line(aes(y=1160$sr)) + geom_line(aes(y=1160$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 1160 2023", x = "Datum", y = "Zeit") pdf("1160_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="1160_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 1160["Sonnenaufgang"] <- strftime(1160$sr, format="%H:%M") 1160["Sonnenuntergang"] <- strftime(1160$ss, format="%H:%M") write.table(1160, file="1160_SaSu.csv", dec=',', sep=';', row.names=FALSE)