library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 09603 <- sunrise.set(50.97496717499484,13.275432586669921, "2023/01/01", timezone="MET", num.days=370) sunrise <- 09603$sunrise sunset <- 09603$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 09603["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 09603["ss"] <- as.POSIXct(sunset, format = "%H:%M") 09603["timestamp"] <- align.time(09603$sunrise, 60*10) 09603 <- 09603[c("timestamp", "sr", "ss")] locsrss <- ggplot(09603, aes(x=09603$timestamp)) + geom_line(aes(y=09603$sr)) + geom_line(aes(y=09603$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 09603 2023", x = "Datum", y = "Zeit") pdf("09603_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="09603_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 09603["Sonnenaufgang"] <- strftime(09603$sr, format="%H:%M") 09603["Sonnenuntergang"] <- strftime(09603$ss, format="%H:%M") write.table(09603, file="09603_SaSu.csv", dec=',', sep=';', row.names=FALSE)