library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 09496 <- sunrise.set(50.60886439999999,13.184678299999973, "2022/01/01", timezone="MET", num.days=370) sunrise <- 09496$sunrise sunset <- 09496$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 09496["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 09496["ss"] <- as.POSIXct(sunset, format = "%H:%M") 09496["timestamp"] <- align.time(09496$sunrise, 60*10) 09496 <- 09496[c("timestamp", "sr", "ss")] locsrss <- ggplot(09496, aes(x=09496$timestamp)) + geom_line(aes(y=09496$sr)) + geom_line(aes(y=09496$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 09496 2022", x = "Datum", y = "Zeit") pdf("09496_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="09496_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 09496["Sonnenaufgang"] <- strftime(09496$sr, format="%H:%M") 09496["Sonnenuntergang"] <- strftime(09496$ss, format="%H:%M") write.table(09496, file="09496_SaSu.csv", dec=',', sep=';', row.names=FALSE)