library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 02994 <- sunrise.set(51.373395,14.0679133, "2024/01/01", timezone="MET", num.days=370) sunrise <- 02994$sunrise sunset <- 02994$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 02994["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 02994["ss"] <- as.POSIXct(sunset, format = "%H:%M") 02994["timestamp"] <- align.time(02994$sunrise, 60*10) 02994 <- 02994[c("timestamp", "sr", "ss")] locsrss <- ggplot(02994, aes(x=02994$timestamp)) + geom_line(aes(y=02994$sr)) + geom_line(aes(y=02994$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 02994 2024", x = "Datum", y = "Zeit") pdf("02994_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="02994_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 02994["Sonnenaufgang"] <- strftime(02994$sr, format="%H:%M") 02994["Sonnenuntergang"] <- strftime(02994$ss, format="%H:%M") write.table(02994, file="02994_SaSu.csv", dec=',', sep=';', row.names=FALSE)