library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) _Waren <- sunrise.set(53.516667,12.684, "2023/01/01", timezone="MET", num.days=370) sunrise <- _Waren$sunrise sunset <- _Waren$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") _Waren["sr"] <- as.POSIXct(sunrise, format = "%H:%M") _Waren["ss"] <- as.POSIXct(sunset, format = "%H:%M") _Waren["timestamp"] <- align.time(_Waren$sunrise, 60*10) _Waren <- _Waren[c("timestamp", "sr", "ss")] locsrss <- ggplot(_Waren, aes(x=_Waren$timestamp)) + geom_line(aes(y=_Waren$sr)) + geom_line(aes(y=_Waren$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - _Waren 2023", x = "Datum", y = "Zeit") pdf("_Waren_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="_Waren_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() _Waren["Sonnenaufgang"] <- strftime(_Waren$sr, format="%H:%M") _Waren["Sonnenuntergang"] <- strftime(_Waren$ss, format="%H:%M") write.table(_Waren, file="_Waren_SaSu.csv", dec=',', sep=';', row.names=FALSE)