library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 85300 <- sunrise.set(36.847345557474526,27.084903717041016, "2025/01/01", timezone="MET", num.days=370) sunrise <- 85300$sunrise sunset <- 85300$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 85300["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 85300["ss"] <- as.POSIXct(sunset, format = "%H:%M") 85300["timestamp"] <- align.time(85300$sunrise, 60*10) 85300 <- 85300[c("timestamp", "sr", "ss")] locsrss <- ggplot(85300, aes(x=85300$timestamp)) + geom_line(aes(y=85300$sr)) + geom_line(aes(y=85300$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 85300 2025", x = "Datum", y = "Zeit") pdf("85300_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="85300_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 85300["Sonnenaufgang"] <- strftime(85300$sr, format="%H:%M") 85300["Sonnenuntergang"] <- strftime(85300$ss, format="%H:%M") write.table(85300, file="85300_SaSu.csv", dec=',', sep=';', row.names=FALSE)